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Abstract

Inhalation injury causes a heterogeneous cascade of insults that increase morbidity and mortality 

among the burn population. Despite major advancements in burn care over the last several 

decades, there remains a significant burden of disease attributable to inhalation injury. For this 

reason effort has been devoted to find new therapeutic approaches to improve outcomes for 

patients who sustain inhalation injuries.

The three major injury classes are: supraglottic, subglottic, and systemic. Treatment options 

between these three subtypes differ based on the pathophysiologic changes that each one elicits.

Currently, no consensus exists for diagnosis or grading of the injury and there are large variations 

in treatment worldwide, ranging from observation and conservative management to advanced 

therapies with nebulization of different pharmacologic agents.

The main pathophysiologic change after a subglottic inhalation injury is an increase in the 

bronchial blood flow. An induced mucosal hyperemia leads to edema, increases mucus secretion 

and plasma transudation into the airways, disables the mucociliary escalator, and inactivates 

hypoxic vasocontriction. Collectively, these insults potentiate airway obstruction with casts formed 

from epithelial debris, fibrin clots, and inspissated mucus. resulting in impaired ventilation. 

Prompt bronchoscopic diagnosis and multimodal treatment improves outcomes. Despite the lack 

of globally acceptedstandard treatments, data exist to support the use of bronchoscopy and 

suctioning to remove debris, nebulized heparin for fibrin casts, nebulized n-acetylcysteine for 

mucus casts, and bronchodilators.

Systemic effects of inhalation injury occur both indirectly from hypoxia or hypercapnia resulting 

from loss of pulmonary function and systemic effects of pro-inflammatory cytokines, as well as 

direct effects from metabolic poisons such as carbon monoxide and cyanide. Both present with 

non-specific clinical symptoms including cardiovascular collapse. Carbon monoxide intoxication 

should be treated with oxygen and cyanide with hydroxocobalamin.
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Inhalation injury remains a great challenge for clinicians and an area of opportunity for scientists. 

Management of this concomitant injury lags behind other aspects of burn care. More clinical 

research is required to improve the outcome of inhalation injury.

The goal of this review is to comprehensively summarize the diagnoses, treatment options, and 

current research.
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Introduction

A serious clinical entity, inhalation injury augments morbidity and increases the probability 

of death. There is a lack of a consensus diagnostic criteria and grading of the severity, and 

there is no standardized treatment that reduces morbidity and mortality in these patients.

In the United States, 486,000 burn patients received medical treatment in 2016.1 3,275 died 

as a result of their injuries. Fire and inhalation casualties are combined in this total; deaths 

from thermal burns cannot always be distinguished from fatalities resulting from the 

inhalation of smoke and toxins. The National Burn Repository of the American Burn 

Association reports up to 10.3% of the burn patients have concomitant inhalation injury.2,3 

As such, 1 in 10 burn patients surviving to admission will have the inhalation injury with the 

respective increase in the mortality rate.

Of 40,000 hospital admissions from burn injuries, only 30,000 were at burn centers;2,3 

10,000 patients with burns severe enough to meet hospitalization criteria were treated at 

non-burn centers. This implies the care received was not specialized, and possibly the 

treatment was not optimal. When treating inhalation injury, the care should be as specialized 

and as current as possible.

The pulmonary system has three fundamental functions: ventilation, oxygenation, and 

expectoration. The duration of smoke exposure, temperature of the inhaled smoke, and 

composition of the smoke are determinants of injury severity.4 Inhalation injury is a 

composite of multiple insults including: supraglottic thermal injury, subglottic airway and 

alveolar poisoning, and systemic poisoning from absorbed small molecule toxins. These 

contaminant insults independently affect each of the pulmonary functions as well as having a 

direct effect on systemic physiology. Further, anatomic characteristics can predispose 

patients to inhalation injury. For example, an infant will develop airway obstructions much 

faster than an adult due to reduced airway diameter. Understanding the contributions of each 

of these pathologies to the patient’s disease is critical to managing inhalation injury.
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Pathophysiology

Supraglottic

Thermal injury is usually confined to the supraglottis due to low heat capacity of air and 

efficient heat dissipation in the upper airway as well as the protective effect of the glottis, 

which tends to close and prevent heat from reaching the infraglottic area.5,6 The edema 

resulting from injury to the supraglottic structures can obstruct the upper airway just hours 

following insult.7 This upper airway edema and obstruction-compromised ventilation can 

progress quickly with burn edema during resuscitation7.

Subglottic

With the exception of inhaled steam, injury below the glottis is largely chemically derived 

arising from the inhalation of irritants and noxious chemicals, such as halogen acids, 

unsaturated aldehydes, and formaldehyde, inflicting damage through direct injury as well as 

through neurogenic inflammation.8 The materials on fire determine the composition of the 

smoke and the severity of the inflammatory reactions. These provoke a violent response 

from the lung parenchyma. The principle subglottic pathophysiologic changes occurring 

after inhalation injury are: airway mucosal hyperemia, bronchospasm, and cast formation 

from fibrinous exudation into the airways, mucosal sloughing, inspissated mucus, and loss 

of surfactant and mucociliary escalator function.7

To start, chemical irritants and smoke entering the lungs incite production of neuropeptides 

that trigger a major inflammatory response characterized by activation of the vagal nerve 

sensory C-fibers, which contain pro-inflammatory peptides, neurokinins, and calcitonin 

gene-related peptide.9,10 Neural endopeptidase targets neuropeptides and plays an important 

role in pathophysiologic changes.11 This leads to bronchoconstriction and activation of nitric 

oxide synthase (iNOS) that generates reactive oxygen species and inhibits hypoxic 

pulmonary vasoconstriction.12–14 Increased airway blood flow is the main factor underlying 

pathologic changes. Dysregulation of hypoxic pulmonary vasoconstriction causes a right-to-

left shunting of deoxygenated blood and, thus, systemic hypoxemia. Irritation also results in 

bronchospasm and impairment of gas exchange in distal airways.7 Edema results as a 

secondary consequence of the activation of the inflammatory cascade.15–18 These 

pathologies lead to small airway obstruction, including alveoli, and compromise ventilation, 

leading to ventilation/perfusion (V/Q) mismatching, causing intrapulmonary shunting and, 

ultimately, compromising oxygenation. Hypermetabolism and the systemic inflammatory 

response are much more intense when inhalation injury is accompanied by cutaneous burn.19

Airway mucosal hyperemia begins rapidly after inhalation injury. Following inhalation 

injury, circulation to the right main bronchus increases up to 20-fold.20 This hyperemia 

provides some physical narrowing of the airways. More significantly, airway hyperemia 

promotes edema and airway exudation, which together diminish effective airway space 

through the formation of fibrin and mucus casts inside the alveoli, compromising 

oxygenation. Due to augmented bronchial blood flow, microvascular pressure and capillary 

permeability increase while the plasma protein concentration in the intravascular space 

decreases. As a result, there is an increase in transvascular fluid flux (lymph flow).21
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The etiology of bronchospasm after inhalation injury is unclear, though it may be due to the 

release of neuropeptides, which are synthesized in the airway submucosa. The degree of 

spasm depends on the compounds present in the inhaled smoke as well as individual airway 

sensitivity to the chemical irritants and toxins.22–25 The bronchospasm serves to exacerbate 

the small airway narrowing initiated by airway mucosal hyperemia. This is intensified by the 

compromised surfactant function that promotes alveolar collapse and atelectasis.

Narrowed airways are ultimately obstructed by airway casts. Airway casts form from blood 

clots, mucus, and sloughed pulmonary epithelium unable to be expectorated due to impaired 

mucociliary escalator function. They adhere to the airway wall, reducing luminal space and 

compromising ventilation. Casts can also obstruct endotracheal cannula. Casts tend to 

migrate to lower airways due to gravity, and this, combined with impaired ciliary function, 

produces hypoventilation of the alveoli and shunting, leading to systemic hypoxia. In an 

inhalation injury animal model, almost 100% of the epithelial airway cells were sloughed 

within 24 hours after the insult.26 Additionally, the increase in blood flow to the bronchi and 

consequently to the bronchial mucus glands stimulates mucus secretion. Excessive mucus in 

the context of impaired ciliary function to clear it leads to the formation of obstructive 

airway casts and their deleterious effects.27 Airway obstruction is life-threatening, and even 

the obstruction of some proximal bronchi can cause hypoventilation of an entire pulmonary 

segment.28 Further, the loss of the epithelial integrity in addition to impaired cell function in 

the airway diminishes bacterial clearance, either through ciliary dysfunction or impaired 

phagocytosis. These issues raise the risk of acquiring an infection of the airway and lungs. 

Failure to expectorate casts and secretions following inhalation injury can be dangerous and 

lethal by compromising ventilation and causing shunting that embarrasses oxygenation.29

When casts obstruct areas of the injured lung, tidal volumes redistribute to non-obstructed 

areas. This injures the non-obstructed, functional lung with volutrauma, barotrauma, Acute 

Respiratory Distress Syndrome (ARDS), and pneumothorax.30 These additional insults to 

the airway increase its susceptibility to infections and permit migration of inflammatory 

cells into the airway, obstructing alveoli and increasing capillary permeability. This cycle 

leads to further plasma leak and pulmonary edema, impairing the ventilation/oxygenation 

ratio and creating right-to-left shunting.31 Additionally, casts originate the chain reaction 

culminating in an intense and generalized inflammation response capable of affecting every 

organ.32 Insufficient oxygen in the body is an independent factor for the release of several 

cytokines that have proinflammatory effects.33,34 Proinflammatory mediators and reactive 

oxygen species, which also result from administration of oxygen in excess of 60% for more 

than 6 hours, contribute to tissue destruction and organ dysfunction.35–40

The small airway obstructions caused by mucosal hyperemia, bronchospasm, epithelial and 

ciliary loss, and the formation of obstructive casts collectively conspire to compromise 

ventilation, oxygenation, and expectoration in the subglottic component of inhalation injury.

ARDS—Any discussion of the pathophysiology of subglottic inhalation injury must include 

ARDS as it is a potentially terminal end point. It typically does not develop until 4–8 days 

postburn. ARDS is the most severe form of acute lung injury that leads to acute respiratory 

failure and is commonly followed by multisystem organ failure and death.41 Annually, 
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nearly 200,000 patients are diagnosed with ARDS in the United States,42 with a mortality 

rate reaching 36%.43 Severe burns associate with hypoxemia and the development of ARDS. 

Clinical manifestations of ARDS include pulmonary edema, inability to ventilate and 

eliminate carbon dioxide, and marked and severe arterial hypoxemia. If the patient is 

conscious and not intubated, tachypnea and dyspnea will be prominent. As per the 

American-European Consensus Conference, the diagnostic criterion was a PaO2/FiO2 ratio ≤ 

200 mmHg.43 The newer Berlin definition characterizes ARDS as acute, within one week of 

a clinical event not explained by cardiac failure, or fluid overload and associated with a 

positive end-expiratory pressure of ≥ 5 cmH20. ARDS is categorized as mild with a 

PaO2/FiO2 between 200–300, moderate between 100–200, and severe below 100.44–46

Inflammation products (e.g., cytokines and coagulation system products) are theorized to 

induce the alterations representative of ARDS.47 The influx of protein-rich edema fluid into 

air spaces consequent of increased permeability of the alveolar–capillary barrier and 

endothelial injury distinguishes the acute phase of ARDS. Intriguingly, it was demonstrated 

that the severity of inhalation injury does not correlate to the elaboration of ARDS in burned 

patients.48 While the pathology of smoke inhalation begins proximally in the airways and 

decreases in effect deeper into the lung, the damage in ARDS begins distally in the alveoli 

and diminishes as it proceeds proximally. Smoke inhalation and ARDS are two distinct but 

related conditions.

Systemic Injury

The pulmonary damage of an inhalation injury has direct systemic pathophysiology 

including hypoxemia, hypercapnia, acidosis, and systemic inflammation from the myriad of 

inflammatory mediators elaborated from the lung. Soluble products of combustion, such as 

carbon monoxide (CO) and cyanide, serve as direct poisons. CO preferentially binds Fe2+ in 

hemoglobin compromising tissue oxygenation. Cyanide prefers binding Fe3+ in the 

mitochondrial cytochromes compromising oxygen utilization and oxidative phosphorylation. 

These small molecular toxins result from similar combustion processes, occur 

coincidentally, and act synergistically.

Diagnosis

No consensus exists regarding the diagnosis, grading, and prognosis of inhalation injury.49 

Lack of diagnostic consensus may result from delayed presentation. Full manifestation 

occurs up to 48 hours after the inhalation insult once the inflammation reaches its peak. 

Further, the clinical presentation (degree of respiratory failure) may not correspond with the 

intensity of the exposure.50,51 In fact, acute lung injury can develop in patients who sustain 

large cutaneous burns without inhalation injury due to the intense and severe inflammatory 

response extensive burns elicit in burn patients.52 For instance, patients with a considerable 

total body surface area (TBSA) burn by scald may develop acute lung injury.53 Most patients 

with inhalation injury who arrive early to the emergency room are conscious with a patent 

airway, and the initial chest radiograph and arterial blood gases may appear at most only 

slightly abnormal.54 As a result of non-specific or delayed presentations, various diagnostic 

adjuncts are utilized worldwide.
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Findings of a physical exam that can indicate inhalation injury include: sooty sputum, 

stridor, wheezing, facial burns, singed nasal hairs, anxiety, cough, stupor, signs of 

hypoxemia, and dyspnea7,8,30,55–57. However, physical findings alone can be misleading and 

should be used in conjunction with other diagnostic adjuncts. One study reported that while 

70% of inhalation injury patients present with facial burns, 70% of patients with facial burns 

do not incur significant pulmonary injury58. Useful injury history that ought be obtained at 

admission includes estimated time of exposure, type of burning material(s), location of 

injury (e.g., enclosed structure, bonfire), and any changes in mental status.7

Supraglottic Injury

Supraglottic injuries are diagnosed on direct visual examination and are often apparent on 

physical examination. Indirect laryngoscopy permits visual assessment to the level of the 

vocal cords and can be a useful, albeit limited, tool should bronchoscopy be unavailable to 

the clinician.59 Notably, ingesting scalding liquids can produce oropharyngeal scald burns. 

These may lead to the development of edema that can occlude the airway with fatal 

consequences, clinically resembling an edematous epiglottitis.60

Subglottic Injury

While some clinicians rely on a physical examination and the accident history for diagnosis, 

these are relatively subjective as compared to bronchoscopy.51 A diagnostic adjunct for 

acute inhalation injury since 1975,61 fiberoptic (flexible) bronchoscopy (FOB) is still not 

universally available, though it is widely used because it provides an immediate view of the 

airway and is reliable for making a rapid diagnosis of inhalation injury and grading it. As the 

gold standard for diagnosis, FOB permits direct visualization of both supraglottic and 

subglottic structures and allows assessment of airway tissue damage from temperature or 

noxious chemical gases.62 Most importantly, while performing the bronchoscopy, the 

clinician can decide if the patient requires intubation.63 Positive findings of inhalation injury 

from bronchoscopy include: erythema, edema (which may be seen as a blunting of the 

carina), mucosal blisters, erosions, hemorrhages, bronchial secretions, and soot deposits 

(Figure 1).7,8 As Hunt and colleagues noted, the airway may appear normal and show no 

signs of mucosal injury, particularly when bronchoscopy is performed very early after the 

inhalation incident.61 Another factor confounding diagnosis is that extensive cutaneous 

burns elicit a major inflammatory response. Resultantly, acute lung injury and 

tracheobronchitis may be seen 48 hours post-burn but are unrelated to inhalation injury. 

Therefore, the physician should supplement the bronchoscopy with physical examination 

and history of the mechanism of injury to ascertain if inhalation injury is present. Due to the 

heat transfer process, greater tissue damage can be expected at proximal sites than at distal 

ones.64

Additional diagnostic techniques have been developed and tested; however, these have not 

been incorporated into standard care protocols because they are too expensive, not readily 

available worldwide, or do not provide enough information to justify the cost. Xenon-133 

scan is a sensitive tool for the diagnosis of inhalation injury.58 This useful adjunct can assess 

the condition of the terminal airways. Various studies have shown that when used in 

conjunction with FOB or with FOB and pulmonary function tests, diagnoses of inhalation 

Foncerrada et al. Page 6

Ann Plast Surg. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



injury were 93% and 96% accurate, respectively.55,65 However, as useful abnormal findings 

often cannot be measured for several hours postinjury using this method, the delay required 

may result in the initiation of treatment too late for optimal management.59 Gammagram 

using nebulized technetium-99 has also been used to confirm the diagnosis of inhalation 

injury.66 While highly sensitive, it is not in wide clinical use due to expense, time to acquire 

the radionuclide, and other logistic difficulties.67,68 Another diagnostic adjunct is the chest 

X-ray. A chest X-ray taken at admission best serves as a baseline for comparison to 

subsequent ones. A normal chest X-ray on hospital day 1 does not preclude a diagnosis of 

inhalation injury as pathophysiologic changes may take hours to become apparent in a 

radiograph.54 However, pulmonary infiltrates may indicate severe inhalation injury and 

susceptibility to significant morbidities.69 Chest tomography (CT) may supplement 

bronchoscopy as well as to grade injury. This adjunct allows the clinician to assess damage 

to smaller airways. Such damage cannot be assessed by bronchoscopy, which provides views 

of only the proximal airway.70 This handicap to FOB has been theorized as an explanation 

for the discrepancy between mortality and bronchoscopic-determined severity of injury.57 In 

assessing the bronchial-wall thickness at admission, one study found that CT measurement 

significantly correlates to the number of ventilator and ICU days, and the development of 

pneumonia.71 Various approaches have shown utility of a CT scan, but timing of scans and 

interpretation of findings remain controversial.70,72

Systemic Poisoning

Systemic injury occurs when the toxic compounds such as CO or cyanide are inhaled and 

enter the blood. Due to non-specific clinical symptoms, this condition may be dismissed, 

leading to negative outcomes, including death. Carbon monoxide intoxication can be quickly 

measured with a pulse CO-oximeter. A newer diagnostic adjunct, it is not readily available at 

many centers. Laboratory work can take too long, and delays in transfer as well as 

supplemental oxygen prophylactically given to patients suspected to have inhalation injury 

can lower carboxyhemoglobin (COHb) concentrations. As COHb levels may not correlate to 

the degree of poisoning, injury history and physical examinations are vital diagnostic tools 

in the setting of carbon monoxide intoxication. Given the half-life of cyanide and no rapid 

method by which to detect it in the blood, diagnosis of cyanide poisoning largely rests on 

findings of lactic acidosis and a carboxyhemoglobin concentration greater than 10% as well 

as abnormal hemodynamics and a Glasgow Coma Scale less than 14.7

GRADING SCHEME

Currently, a multicenter study to determine a grading scheme for inhalation injury based on 

clinical, bronchoscopic, biochemical, and radiographic findings is underway 

(ClinicalTrials.gov identifier NCT01194024). As no such study has transpired prior, no 

consensus exists as to a scoring system. The Abbreviated Injury Score corresponds with an 

increase in impaired gas exchange and mortality73. However, studies have found that the 

PaO2/FiO2 ratio a more reliable indicator of inhalation injury severity. Yet, this grading 

utility is impacted by the ventilator settings, and it may be affected by resuscitation volume.
73,74 At Shriners Hospitals for Children – Galveston, we grade the severity as mild, 
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moderate or severe based on bronchoscope findings of erythema, secretion, casts, and 

epithelial sloughing.

TREATMENT

Supraglottic

The primary treatment for a supraglottic inhalation injury compromising the airway is 

orotracheal or nasotracheal intubation. Most intubations occur prior to arrival at the burn 

center by personnel inexperienced in the management of burn patients.75 Early intubation 

patients are those who receive supplemental oxygen and present with respiratory distress or 

hypoxemia or with signs of upper airway compromise, such as mucosal edema, erythema, 

stridor or hoarseness.

Data conflict over the appropriateness of early intubation in burn patients. Pulmonary 

function tests have been investigated for their utility in identifying need for intubation, but 

the results did not match the clinical status of the patient.76 In a retrospective study 

evaluating the efficacy of prehospital intubations, it was shown that of 879 patients, only 

11.9% were extubated within 24 hours of admission once inhalation injury was excluded by 

FOB.77 In a recent large study series, more than 33% of burn patients were extubated within 

1 day of intubation without reintubation following transfer to a burn center.75 In a smaller 

series, 53% of burn patients were extubated on hospital day 1 and almost 65% by hospital 

day 278. Given the many and various complications that can arise from intubations (e.g., 

atelectasis, ventilator-associated pneumonia, lost airway, tracheal injury, death), the risk to 

the patient may outweigh the reward.79 In general, intubation is indicated to improve 

ventilation or oxygenation, or to maintain a compromised airway (Table 2). The best 

approach is to keep the airway patent until an experienced practitioner can perform FOB and 

then determine if the tube should be removed.

Maintaining an ETT on a burned face is a significant challenge and accidental extubation is 

a concern. However, many solutions have been developed. A large survey of American burn 

centers reported ETTs secured with linen non-adhesive tape in 59% of cases, manufactured 

devices in 48%, and orthodontic in 24%.80 Septal ties have been utilized to secure nasal 

intubations at Shriners Hospitals for Children® – Galveston for 20 years without accidental 

extubation or septic sinusitis complications.81 Tracheotomy delivers a durable airway long-

term with increased patient comfort. The survey of American burn centers also reported the 

average tracheotomy is performed at 2 weeks. Despite a consensus that indications exist for 

earlier tracheotomies,80 Terragni et al. found ventilator and ICU days were reduced but no 

significant improvement in ventilator-associated pneumonia from early tracheotomy in a 

study of 600 adult ICU patients.82

When possible, the patient should receive humidified oxygen to prevent secretions from 

thickening. The head of the bed should be elevated 45 degrees to reduce supraglottic edema 

and minimize the pressure exerted by the intra-abdominal structures when the patient is 

lying flat, and judicious use of steroids and/or diuretics may be helpful.83
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Subglottic

Management of subglottic inhalation injuries is directed at the principle pathophysiologies, 

particularly mucosal hyperemia and edema, bronchospasm, expectoration of mucous and 

casts, and improving V/Q ratio. Care must be taken to limit further harm such as ventilator-

induced injury through excessive pressure (barotrauma), which may be as severe as a tension 

pneumothorax and, ultimately, life-threatening.

Management of airway hyperemia is currently in preclinical studies. Reduction of airway 

blood flow through bronchial artery ligation has demonstrated significant improvements in 

many variables, including reduction in transvascular fluid flux (lymph flow).19,84–87 Studies 

in animal models of inhalation injury showed that bronchial artery ligation diminishes 

edema.19,88 Occlusion of the bronchial artery reduces chemokine levels.85–87 These studies 

support the use of nebulized agents for treating inhalation injury, especially agents that may 

reduce edema. While many practitioners endeavor to reduce airway edema by restricting 

fluid resuscitation, patients with inhalation injury require more intravenous fluid for 

resuscitation than predicted by resuscitation formulas,89 which only consider the percent of 

cutaneous burn. In a preclinical inhalation injury model, fluid restriction exacerbates 

pulmonary capillary leak and increases lung lymph formation.90 Fluid restriction can lead to 

hypoperfusion, shock, and death, while fluid overload can result in pulmonary edema, right 

heart failure, compartment syndromes, shock, and death.91 Several burn resuscitation 

formulas can be used to estimate fluid requirements for 24–48 hours post-burn. The rate of 

the fluid administration requires titration, which can lead to error and suboptimal outcomes. 

Resultantly, computerized decision support systems have been developed to assist the burn 

surgeon in fluid resuscitation management. In burn patients, these systems have yielded 

satisfactory results, with sufficient fluid being administered to patients during resuscitation.
92,93 Regardless of the fluid resuscitation formula employed, the patient should be 

resuscitated sufficiently to a selected end point and care taken to avoid fluid overload or 

underload.

Bronchoalveolar lavage is the washing of lung segments often utilized to diagnose infections 

but does have therapeutic relevance, particularly whole-lung lavage.94,95 Saline is used to 

flush the contaminant materials from the lung until the fluid runs clear.96 In reviewing data 

from the National Burn Repository, Carr and colleagues determined that burn patients with 

inhalation injury complicated by pneumonia who underwent at least one bronchoscopic 

procedure had significantly shorter stays in ICUs and hospitals, reduced hospital costs, and a 

mortality risk reduced by 18% as compared to burn patients who did not undergo a 

bronchoscopic procedure.97 Patients with less than 60% TBSA burn who underwent at least 

one bronchoscopic procedure had decreased days on mechanical ventilation, leading Carr 

and coworkers to conclude bronchoscopy may be indicated following inhalation injury.97

Concerningly, airway pressure may rise to dangerous levels if high tidal volume ventilation 

is initiated; the probability of tension pneumothorax is latent in this scenario.98 

Overdistention of the airway stimulates the release of multiple pro-inflammatory cytokines 

such as interleukin-8, a powerful neutrophil chemotactic factor. This results in even greater 

injury to the pulmonary tissue cells by the inducement of iNOS that serves to increase 

production of reactive oxygen species, which overpower the native defenses of the body.57,99 
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Therefore, removal of these obstructive casts by medical intervention is vital. However, casts 

may be lodged in the alveoli, making it difficult or impossible to extract them using 

mechanical methods such as bronchoalveolar lavage.

Breaking down airway casts and augmenting expectoration comprise the core of managing 

subglottic inhalation injury. Nebulized fibrinolytics have been evaluated in preclinical 

inhalation injury models with promising results.100 Fibrin casts are broken down with 

nebulized heparin.101,102 Heparin prevents coagulation of transudated plasma leaking from 

injured pulmonary capillaries.5,103 With sloughed mucosa, mucus portions of casts are 

fragmented by n-acetylcysteine acting as a mucolytic agent and permitting expectoration.104 

N-acetylcysteine has been shown safe and efficacious.105 This combination, nebulized N-

acetylcysteine and heparin with albuterol and pulmonary toileting, is a common protocol to 

treat inhalation injury.104 It serves to mediate the cell injury incited by reactive oxygen 

species induced by iNOS.57 Despite noted methodological issues, a meta-analysis 

comprising 286 burn patients determined inhaled heparin reduced ventilator days and 

resulted in more patients alive at day 28 with lower lung injury scores.106 In a nonburned 

population, Kashefi and colleagues found an increase in pneumonia rates and no reduction in 

mortality or mechanical ventilation days from a nebulized heparin and N-acetylcysteine/

albuterol regimen, highlighting the distinct pathology of inhalation injury.107 Conversely, a 

recently published case-control study of 72 inhalation injured burn patients demonstrated a 

7-day course of nebulized heparin with N-acetylcysteine and albuterol increased ventilator-

free days and decreased average ventilator days from 14 to 7. There was no increase in 

mortality, pneumonia rates, or bleeding in this study, and nebulized heparin was found safe 

and effective.104 This efficacy is consistent with the clinical experience treating burn patients 

at Shriners Hospitals for Children – Galveston.

Bronchospasm is treated with nebulized bronchodilators. Nebulized epinephrine has been 

tested in the preclinical setting with satisfactory results by reducing airway pressure and 

increasing distensibility through its β2-agonist effects, causing bronchodilation in models of 

inhalation injury with cutaneous burns.108 Administration of nebulized albuterol or 

nebulized epinephrine produces immediate effects, provoking bronchodilation and reducing 

airway pressure. Bronchodilators are also needed when administering N-acetylcysteine due 

to its potent respiratory irritant profile.

Injured lungs must clear secretions, damaged mucosa, pathogens, and aspirated material. In 

the case of compromised mucociliary escalators, transudates of fibrinous material and 

mucosal slough must be expectorated. Bronchoscopy, mucolytics, suctioning, chest 

physiotherapy, and specific ventilator modes assist in lung expectoration.109 Airway 

suctioning should be performed when needed. If done incautiously, the patient may become 

hypoxic and bradycardic due to vagal stimulation. Therefore, pre-oxygenation is advisable 

prior to suction, and suctioning should be done for up to 10 seconds. Chest physiotherapy, 

including percussive and coughing techniques, should be performed, along with early 

mobilization. Postural drainage is recommended and should be done when possible.110 

Collectively, these techniques prevent the accumulation of secretions, which may cause 

airway obstruction and atelectasis and potentiate pneumonias.111,112 Clearance of secretions 
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can be eased by chest percussion and vibration such as high-frequency chest wall oscillation.
113

Burn patients present considerable challenges in mechanical ventilation and ARDS from 

elevated carbon dioxide production because of the hypermetabolic response, perturbed 

physiology from inhalation injury, reduced compliance from eschar, and pulmonary edema 

from resuscitation. Ventilator management is centered on ensuring sufficient oxygenation 

and ventilation and optimizing expectoration, balanced against avoiding second-hit injuries 

that can incite ARDS. ARDSnet studies demonstrated that ventilator-associated injuries to 

lungs can trigger ARDS and appreciably affect morbidity and mortality. While ARDSnet 

upholds utilizing low tidal volume (LTV), these protocols are ineffectual among burn 

patients; 33% failed to meet ventilation and oxygenation goals, increasing to about 67% with 

concomitant inhalation injury.80 Furthermore, the work required to breathe intensifies 

progressively at low tidal volumes.114 Investigating pulmonary outcomes in 932 burned 

pediatric patients with inhalation injury over 28 years, Sousse and colleagues concluded that 

high tidal volume (15+/−3 ml/kg) corresponds with considerably decreased ventilator days 

and ARDS, maximum positive end-expiratory pressure, significantly increased maximum 

peak inspiratory pressure, and increased pneumothorax. They determined that high tidal 

volumes might disrupt the cascade of events leading to lung injury following inhalation 

injury.115

Both volume and pressure-cycled modes are in common use, though the optimal ventilator 

mode in inhalation injury remains controversial. The open lung strategies airway pressure-

release ventilation (APRV) and high-frequency percussive ventilation (HFPV) augment 

impaired oxygenation and buttress expectoration and are becoming the standard modes for 

more burn centers.

APRV provides unceasing positive airway pressure with a time-cycled pressure-release 

phase to permit ventilation and expectoration. Keeping pressures elevated in the airways for 

most of the respiratory cycle, this facilitates improved V/Q ratio, extensive alveolar 

recruitment permitting an open lung, and very high MAP-O2 to overpower high A-a 

gradients.116

A time-cycled mode, HFPV delivers subtidal pressure-limited breaths at high frequencies 

(400–800 beats/min) superimposed on a conventional inspiratory and expiratory pressure-

controlled cycle (10–30 breaths/min). This purportedly mobilizes airway secretions and 

casts, facilitating improved expectoration and pulmonary toilet, and provides adequate gas 

exchange at lower airway pressures. First reported in 1989, HFPV has been tested primarily 

in burned patients with inhalation injury.117 In this study, HFPV was used as a salvage 

therapy in one group of burned patients with inhalation injury and as the primary therapy in 

another group. Improvements in oxygenation and a lower rate of pneumonia were seen. A 

subsequent study documented an improvement in mortality in burned patients with 

inhalation injury treated with HFPV compared to historical controls as well as significant 

decreases in the work of breathing and lower inspiratory pressures in addition to 

improvements in oxygenation and the rate of pneumonia.118 However, some studies have 

reported no statistically significant differences between pressure-limited strategies versus 
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conventional modes in various outcomes (e.g., mortality, pulmonary complications, 

inflammatory markers) except in barotrauma and improved oxygenation.119, 120 In the trial 

comparing HFPV to an ARDSnet-based conventional strategy, a lower incidence of 

barotrauma was seen in the HFPV group, improved oxygenation early and less rescue 

needed.120 While the efficacy is debated, these data mostly support HFPV as a useful 

adjunct in managing burn patients.

Systemic

Treatment for CO and cyanide intoxication is urgent since these can cause systemic toxicity 

and can be rapidly fatal. Intoxication should be suspected and ruled out in all patients with 

intense smoke exposure. When carboxyhemoglobin levels exceed 10%, 100% oxygen 

should be administered via a tightly-fitting high flow mask or endotracheal tube.121 On 

100% oxygen, the half-life of the carboxyhemoglobin was reduced to 74 ± 25 minutes from 

4–6 hours.122,123 Measurement of carboxyhemoglobin on ABG can quantify CO quickly. 

Real-time assessment via pulse CO-oximetry is available but not widely adopted.124 

Controversy exists regarding the use of hyperbaric oxygen in these patients.125 Additionally, 

hyperbaric chambers are not always available and can be costly. However, in patients whose 

carboxyhemoglobin levels remain high following administration of oxygen or whose mental 

status deteriorates, hyperbaric oxygen therapy may be indicated.126 A 25% reduction in the 

incidence of long-term neurological sequelae was reported in patients receiving hyperbaric 

oxygen therapy as compared to patients receiving other treatments.127 Further, this adjunct 

has been shown to allay the inflammatory processes provoked by CO poisoning.126 

However, this must be balanced against other critical care needs.

Cyanide is often present in smoke, particularly when the combustible is plastic. 

Hydroxocobalamin, the precursor of vitamin B12, is a safe treatment with few side effects. 

Sulfur donors such as sodium thiosulfate accentuate the conversion of cyanide to 

thiocyanate, reducing its toxicity.128 However, a Task Force of the European Centre for 

Ecotoxicology and Toxicology of Chemicals determined hydroxocobalamin to be the 

preferred adjunct to treat cyanide intoxication from smoke inhalation rather than sodium 

thiosulfate or sodium nitrite.93 Treating cyanide poisoning can be an indirect therapy of 

carbon monoxide intoxication because of the synergistic toxicities of the molecules, thereby 

shortening the duration of oxygen administration.

CONCLUSION

Inhalation injuries increase burn mortality through heterogeneous injuries. Limited number 

of treatment modalities and the lack of a clear diagnostic criteria or grading system to direct 

therapeutic modalities stymie medical professionals in assessing and managing inhalation 

injury. This, in turn, has prevented continued significant improvements in this coincident 

pathology of thermal injury, explaining the high mortality rates resulting from inhalation 

injury in burn patients.129 Further clinical study is required to address this grave condition to 

better serve this patient population.

Foncerrada et al. Page 12

Ann Plast Surg. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments

This work was supported by National Institutes of Health (P50 GM060338, R01 GM056687, R01 GM112936), 
NIDILRR (90DP0043-02-00), and Shriners Hospitals for Children® (84080, 79141, 71008, 71000). It was also 
made possible with the support of the Institute for Translational Sciences at the University of Texas Medical 
Branch, supported in part by a Clinical and Translational Science Award (UL1TR000071) from the National Center 
for Advancing Translational Science. The work contained herein is the authors’ own work and does not necessarily 
reflect the views of the NIH, Shriners Hospitals for Children®, or the University of Texas Medical Branch.

We would also like to thank Genevieve Bitz for her myriad of contributions to this manuscript, to Dr. Kasie Cole for 
her scientific editing and proof-reading the article.

References

1. Natinal Hospital Ambulatory Medical Care Survey: 2011 Emergency Department Summary Tables. 
CDC; 

2. Burn Incidence Fact Sheet. American Burn Association; 

3. 2016 National Burn Repository. American Burn Association; 2017. 

4. Kimura R, Traber LD, Herndon DN, Linares HA, Lubbesmeyer HJ, Traber DL. Increasing duration 
of smoke exposure induces more severe lung injury in sheep. J Appl Physiol (1985). 1988; 64(3):
1107–1113. [PubMed: 3366733] 

5. McCall JE, Cahill TJ. Respiratory care of the burn patient. J Burn Care Rehabil. 2005; 26(3):200–
206. [PubMed: 15879741] 

6. Moritz AR, Henriques FC, McLean R. The Effects of Inhaled Heat on the Air Passages and Lungs: 
An Experimental Investigation. Am J Pathol. 1945; 21(2):311–331. [PubMed: 19970813] 

7. Dries DJ, Endorf FW. Inhalation injury: epidemiology, pathology, treatment strategies. Scandinavian 
journal of trauma, resuscitation and emergency medicine. 2013; 21:31.

8. Walker PF, Buehner MF, Wood LA, et al. Diagnosis and management of inhalation injury: an 
updated review. Crit Care. 2015; 19:351. [PubMed: 26507130] 

9. Brain SD, Cox HM. Neuropeptides and their receptors: innovative science providing novel 
therapeutic targets. Br J Pharmacol. 2006; 147(Suppl 1):S202–211. [PubMed: 16402106] 

10. Dakhama A, Larsen GL, Gelfand EW. Calcitonin gene-related peptide: role in airway homeostasis. 
Curr Opin Pharmacol. 2004; 4(3):215–220. [PubMed: 15140411] 

11. Jacob S, Deyo DJ, Cox RA, Traber DL, Herndon DN, Hawkins HK. Mechanisms of toxic smoke 
inhalation and burn injury: role of neutral endopeptidase and vascular leakage in mice. Toxicol 
Mech Methods. 2009; 19(3):191–196. [PubMed: 19727335] 

12. Fontan JJ, Cortright DN, Krause JE, et al. Substance P and neurokinin-1 receptor expression by 
intrinsic airway neurons in the rat. Am J Physiol Lung Cell Mol Physiol. 2000; 278(2):L344–355. 
[PubMed: 10666119] 

13. Kraneveld AD, Nijkamp FP. Tachykinins and neuro-immune interactions in asthma. Int 
Immunopharmacol. 2001; 1(9–10):1629–1650. [PubMed: 11562057] 

14. Sureshbabu A, Bhandari V. Targeting mitochondrial dysfunction in lung diseases: emphasis on 
mitophagy. Front Physiol. 2013; 4:384. [PubMed: 24421769] 

15. Lange M, Enkhbaatar P, Traber DL, et al. Role of calcitonin gene-related peptide (CGRP) in ovine 
burn and smoke inhalation injury. J Appl Physiol (1985). 2009; 107(1):176–184. [PubMed: 
19407258] 

16. Nadel JA. Neutral endopeptidase modulates neurogenic inflammation. Eur Respir J. 1991; 4(6):
745–754. [PubMed: 1889501] 

17. Richardson JD, Vasko MR. Cellular mechanisms of neurogenic inflammation. J Pharmacol Exp 
Ther. 2002; 302(3):839–845. [PubMed: 12183638] 

18. Solway J, Leff AR. Sensory neuropeptides and airway function. J Appl Physiol (1985). 1991; 
71(6):2077–2087. [PubMed: 1663932] 

19. Abdi S, Herndon DN, Traber LD, et al. Lung edema formation following inhalation injury: role of 
the bronchial blood flow. J Appl Physiol (1985). 1991; 71(2):727–734. [PubMed: 1938747] 

Foncerrada et al. Page 13

Ann Plast Surg. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



20. Lange M, Hamahata A, Traber DL, et al. Preclinical evaluation of epinephrine nebulization to 
reduce airway hyperemia and improve oxygenation after smoke inhalation injury. Crit Care Med. 
2011; 39(4):718–724. [PubMed: 21263320] 

21. Rehberg S, Yamamoto Y, Sousse LE, et al. Antithrombin attenuates vascular leakage via inhibiting 
neutrophil activation in acute lung injury. Crit Care Med. 2013; 41(12):e439–446. [PubMed: 
24107637] 

22. Jones J, McMullen MJ, Dougherty J. Toxic smoke inhalation: cyanide poisoning in fire victims. 
Am J Emerg Med. 1987; 5(4):317–321. [PubMed: 3593498] 

23. Lundquist P, Rammer L, Sorbo B. The role of hydrogen cyanide and carbon monoxide in fire 
casualties: a prospective study. Forensic Sci Int. 1989; 43(1):9–14. [PubMed: 2556335] 

24. Terrill JB, Montgomery RR, Reinhardt CF. Toxic gases from fires. Science. 1978; 200(4348):
1343–1347. [PubMed: 208143] 

25. Vogel SN, Sultan TR, Ten Eyck RP. Cyanide poisoning. Clin Toxicol. 1981; 18(3):367–383. 
[PubMed: 7016420] 

26. Cox RA, Jacob S, Zhu Y, et al. Airway obstruction and bacterial invasion in autopsy tissue of 
pediatric burn victims. Journal of burn care & research : official publication of the American Burn 
Association. 2014; 35(2):148–153. [PubMed: 24503967] 

27. Cox RA, Mlcak RP, Chinkes DL, et al. Upper airway mucus deposition in lung tissue of burn 
trauma victims. Shock. 2008; 29(3):356–361. [PubMed: 17693942] 

28. Thomas HM 3rd, Garrett RC. Strength of hypoxic vasoconstriction determines shunt fraction in 
dogs with atelectasis. J Appl Physiol Respir Environ Exerc Physiol. 1982; 53(1):44–51. [PubMed: 
6889592] 

29. Nakae H, Tanaka H, Inaba H. Failure to clear casts and secretions following inhalation injury can 
be dangerous: report of a case. Burns. 2001; 27(2):189–191. [PubMed: 11226661] 

30. Pruitt BA Jr, Cioffi WG. Diagnosis and treatment of smoke inhalation. J Intensive Care Med. 1995; 
10(3):117–127. [PubMed: 10155177] 

31. Cox RA, Burke AS, Jacob S, et al. Activated nuclear factor kappa B and airway inflammation after 
smoke inhalation and burn injury in sheep. Journal of burn care & research : official publication of 
the American Burn Association. 2009; 30(3):489–498. [PubMed: 19349878] 

32. Fischer S, Clauss M, Wiesnet M, Renz D, Schaper W, Karliczek GF. Hypoxia induces permeability 
in brain microvessel endothelial cells via VEGF and NO. Am J Physiol. 1999; 276(4 Pt 1):C812–
820. [PubMed: 10199811] 

33. Madjdpour C, Jewell UR, Kneller S, et al. Decreased alveolar oxygen induces lung inflammation. 
Am J Physiol Lung Cell Mol Physiol. 2003; 284(2):L360–367. [PubMed: 12388372] 

34. Wood JG, Johnson JS, Mattioli LF, Gonzalez NC. Systemic hypoxia increases leukocyte 
emigration and vascular permeability in conscious rats. J Appl Physiol (1985). 2000; 89(4):1561–
1568. [PubMed: 11007596] 

35. Basadre JO, Sugi K, Traber DL, Traber LD, Niehaus GD, Herndon DN. The effect of leukocyte 
depletion on smoke inhalation injury in sheep. Surgery. 1988; 104(2):208–215. [PubMed: 
3400056] 

36. Morita N, Shimoda K, Traber MG, et al. Vitamin E attenuates acute lung injury in sheep with burn 
and smoke inhalation injury. Redox Rep. 2006; 11(2):61–70. [PubMed: 16686996] 

37. Nguyen TT, Cox CS Jr, Herndon DN, et al. Effects of manganese superoxide dismutase on lung 
fluid balance after smoke inhalation. J Appl Physiol (1985). 1995; 78(6):2161–2168. [PubMed: 
7665413] 

38. Niehaus GD, Kimura R, Traber LD, Herndon DN, Flynn JT, Traber DL. Administration of a 
synthetic antiprotease reduces smoke-induced lung injury. J Appl Physiol (1985). 1990; 69(2):
694–699. [PubMed: 1699920] 

39. Virag L. Poly(ADP-ribosyl)ation in asthma and other lung diseases. Pharmacol Res. 2005; 52(1):
83–92. [PubMed: 15911336] 

40. Yamamoto Y, Enkhbaatar P, Sousse LE, et al. Nebulization with gamma-tocopherol ameliorates 
acute lung injury after burn and smoke inhalation in the ovine model. Shock. 2012; 37(4):408–414. 
[PubMed: 22266978] 

Foncerrada et al. Page 14

Ann Plast Surg. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



41. Matthay MA, Ware LB, Zimmerman GA. The acute respiratory distress syndrome. J Clin Invest. 
2012; 122(8):2731–2740. [PubMed: 22850883] 

42. Rubenfeld GD, Caldwell E, Peabody E, et al. Incidence and outcomes of acute lung injury. The 
New England journal of medicine. 2005; 353(16):1685–1693. [PubMed: 16236739] 

43. Erickson SE, Martin GS, Davis JL, Matthay MA, Eisner MD, Network NNA. Recent trends in 
acute lung injury mortality: 1996–2005. Crit Care Med. 2009; 37(5):1574–1579. [PubMed: 
19325464] 

44. Fanelli V, Vlachou A, Ghannadian S, Simonetti U, Slutsky AS, Zhang H. Acute respiratory distress 
syndrome: new definition, current and future therapeutic options. J Thorac Dis. 2013; 5(3):326–
334. [PubMed: 23825769] 

45. Bordes J, Lacroix G, Esnault P, et al. Comparison of the Berlin definition with the American 
European consensus definition for acute respiratory distress syndrome in burn patients. Burns. 
2014; 40(4):562–567. [PubMed: 24685349] 

46. Force ADT, Ranieri VM, Rubenfeld GD, et al. Acute respiratory distress syndrome: the Berlin 
Definition. JAMA. 2012; 307(23):2526–2533. [PubMed: 22797452] 

47. Curley GF, Laffey JG, Zhang H, Slutsky AS. Biotrauma and Ventilator Induced Lung Injury: 
Clinical implications. Chest. 2016

48. Liffner G, Bak Z, Reske A, Sjoberg F. Inhalation injury assessed by score does not contribute to the 
development of acute respiratory distress syndrome in burn victims. Burns. 2005; 31(3):263–268. 
[PubMed: 15774279] 

49. Enkhbaatar P, Pruitt BA Jr, Suman O, et al. Pathophysiology, research challenges, and clinical 
management of smoke inhalation injury. Lancet. 2016; 388(10052):1437–1446. [PubMed: 
27707500] 

50. Woodson LC. Diagnosis and grading of inhalation injury. Journal of burn care & research : official 
publication of the American Burn Association. 2009; 30(1):143–145. [PubMed: 19060739] 

51. Woodson, LC., Talon, M., Traber, DL., Herndon, DN. Diagnosis and treatment of inhalation injury. 
In: Herndon, DN., editor. Total Burn Care. 4. Edinburgh: Saunders Elsevier; 2012. p. 229-237.

52. Steinvall I, Bak Z, Sjoberg F. Acute respiratory distress syndrome is as important as inhalation 
injury for the development of respiratory dysfunction in major burns. Burns. 2008; 34(4):441–451. 
[PubMed: 18243566] 

53. Zak AL, Harrington DT, Barillo DJ, Lawlor DF, Shirani KZ, Goodwin CW. Acute respiratory 
failure that complicates the resuscitation of pediatric patients with scald injuries. J Burn Care 
Rehabil. 1999; 20(5):391–399. [PubMed: 10501327] 

54. Wittram C, Kenny JB. The admission chest radiograph after acute inhalation injury and burns. Br J 
Radiol. 1994; 67(800):751–754. [PubMed: 8087478] 

55. Cioffi WG Jr, Rue LW 3rd, et al. Diagnosis and treatment of inhalation injuries. Crit Care Nurs 
Clin North Am. 1991; 3(2):191–198. [PubMed: 2054126] 

56. Demling RH. Smoke inhalation lung injury: an update. Eplasty. 2008; 8:e27. [PubMed: 18552974] 

57. Traber, DL., Enkhbaatar, P., Maybauer, DM. The pathophysiology of inhalation injury. In: 
Herndon, DN., editor. Total Burn Care. 4. Philadelphia: Saunders; 2012. p. 219-228.

58. Moylan JA. Inhalation Injury-A Primary Determinant of Survival Following Major Burns. J Burn 
Care Rehabil. 1981; 2(2):76–85.

59. Peters WJ. Inhalation injury caused by the products of combustion. Can Med Assoc J. 1981; 
125(3):249–252. [PubMed: 7023640] 

60. Dye DJ, Milling MA, Emmanuel ER, Craddock KV. Toddlers, teapots, and kettles: beware intraoral 
scalds. BMJ. 1990; 300(6724):597–598. [PubMed: 2108760] 

61. Hunt JL, Agee RN, Pruitt BA Jr. Fiberoptic bronchoscopy in acute inhalation injury. J Trauma. 
1975; 15(8):641–649. [PubMed: 1152086] 

62. Cancio LC. Airway management and smoke inhalation injury in the burn patient. Clin Plast Surg. 
2009; 36(4):555–567. [PubMed: 19793551] 

63. Muehlberger T, Kunar D, Munster A, Couch M. Efficacy of fiberoptic laryngoscopy in the 
diagnosis of inhalation injuries. Arch Otolaryngol Head Neck Surg. 1998; 124(9):1003–1007. 
[PubMed: 9738810] 

Foncerrada et al. Page 15

Ann Plast Surg. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



64. Haponik, EF., Munster, AM. Diagnosis, impact, and classification of inhalation injury. In: Haponik, 
EF., Munster, AM., editors. Respiratory injury: smoke inhalation and burns. New York: McGraw-
Hill Inc; 1990. p. 17-45.

65. Agee RN, Long JM 3rd, Hunt JL, et al. Use of 133xenon in early diagnosis of inhalation injury. J 
Trauma. 1976; 16(3):218–224. [PubMed: 1255837] 

66. Lin WY, Kao CH, Wang SJ. Detection of acute inhalation injury in fire victims by means of 
technetium-99m DTPA radioaerosol inhalation lung scintigraphy. Eur J Nucl Med. 1997; 24(2):
125–129. [PubMed: 9021108] 

67. Shiau YC, Liu FY, Tsai JJ, Wang JJ, Ho ST, Kao A. Usefulness of technetium-99m 
hexamethylpropylene amine oxime lung scan to detect inhalation lung injury of patients with 
pulmonary symptoms/signs but negative chest radiograph and pulmonary function test findings 
after a fire accident--a preliminary report. Ann Nucl Med. 2003; 17(6):435–438. [PubMed: 
14575375] 

68. Tanizaki S. Assessing inhalation injury in the emergency room. Open Access Emerg Med. 2015; 
7:31–37. [PubMed: 27147888] 

69. Masanes MJ, Legendre C, Lioret N, Saizy R, Lebeau B. Using bronchoscopy and biopsy to 
diagnose early inhalation injury. Macroscopic and histologic findings. Chest. 1995; 107(5):1365–
1369. [PubMed: 7750332] 

70. Oh JS, Chung KK, Allen A, et al. Admission chest CT complements fiberoptic bronchoscopy in 
prediction of adverse outcomes in thermally injured patients. Journal of burn care & research : 
official publication of the American Burn Association. 2012; 33(4):532–538. [PubMed: 22210063] 

71. Yamamura H, Kaga S, Kaneda K, Mizobata Y. Chest computed tomography performed on 
admission helps predict the severity of smoke-inhalation injury. Crit Care. 2013; 17(3):R95. 
[PubMed: 23706091] 

72. Kwon HP, Zanders TB, Regn DD, et al. Comparison of virtual bronchoscopy to fiber-optic 
bronchoscopy for assessment of inhalation injury severity. Burns. 2014; 40(7):1308–1315. 
[PubMed: 25112807] 

73. Hassan Z, Wong JK, Bush J, Bayat A, Dunn KW. Assessing the severity of inhalation injuries in 
adults. Burns. 2010; 36(2):212–216. [PubMed: 20006445] 

74. Ryan CM, Fagan SP, Goverman J, Sheridan RL. Grading inhalation injury by admission 
bronchoscopy. Crit Care Med. 2012; 40(4):1345–1346. [PubMed: 22425833] 

75. Romanowski KS, Palmieri TL, Sen S, Greenhalgh DG. More than one third of intubations in 
patients transferred to burn centers are unnecessary: Proposed guidelines for appropriate intubation 
of the burn patient. Journal of burn care & research : official publication of the American Burn 
Association. 2015; 37(5):e409–414.

76. Haponik EF, Meyers DA, Munster AM, et al. Acute upper airway injury in burn patients. Serial 
changes of flow-volume curves and nasopharyngoscopy. Am Rev Respir Dis. 1987; 135(2):360–
366. [PubMed: 3813197] 

77. Eastman AL, Arnoldo BA, Hunt JL, Purdue GF. Pre-burn center management of the burned airway: 
do we know enough? Journal of burn care & research : official publication of the American Burn 
Association. 2010; 31(5):701–705. [PubMed: 20634705] 

78. Klein MB, Nathens AB, Emerson D, Heimbach DM, Gibran NS. An analysis of the long-distance 
transport of burn patients to a regional burn center. Journal of burn care #x00026; research : 
official publication of the American Burn Association. 2007; 28(1):49–55.

79. Romanowski KS, Palmieri TL, Sen S, Greenhalgh DG. More Than One Third of Intubations in 
Patients Transferred to Burn Centers are Unnecessary: Proposed Guidelines for Appropriate 
Intubation of the Burn Patient. Journal of burn care & research : official publication of the 
American Burn Association. 2015

80. Chung KK, Rhie RY, Lundy JB, et al. A Survey of Mechanical Ventilator Practices Across Burn 
Centers in North America. Journal of burn care & research : official publication of the American 
Burn Association. 2016; 37(2):e131–139. [PubMed: 26135527] 

81. Culnan, DM., Sherman, WC., Chung, KK., Wolf, SE. Critical Care in the Severely Burned: Unit 
Organization, Organ Support and Management of Complications. In: Herndon, DN., editor. Total 
Burn Care. 5. London: Elsevier; 2017. 

Foncerrada et al. Page 16

Ann Plast Surg. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



82. Terragni PP, Antonelli M, Fumagalli R, et al. Early vs late tracheotomy for prevention of 
pneumonia in mechanically ventilated adult ICU patients: a randomized controlled trial. JAMA. 
2010; 303(15):1483–1489. [PubMed: 20407057] 

83. DeMuro JP, Mongelli MN, Hanna AF. Perioperative upper airway edema: Risk factors and 
management. Crit Care & Shock. 2013; 16(4):125–132.

84. Efimova O, Volokhov AB, Iliaifar S, Hales CA. Ligation of the bronchial artery in sheep attenuates 
early pulmonary changes following exposure to smoke. J Appl Physiol (1985). 2000; 88(3):888–
893. [PubMed: 10710383] 

85. Hamahata A, Enkhbaatar P, Sakurai H, Nozaki M, Traber DL. Effect of ablated bronchial blood 
flow on survival rate and pulmonary function after burn and smoke inhalation in sheep. Burns. 
2009; 35(6):802–810. [PubMed: 19303716] 

86. Morita N, Enkhbaatar P, Maybauer DM, et al. Impact of bronchial circulation on bronchial 
exudates following combined burn and smoke inhalation injury in sheep. Burns. 2011; 37(3):465–
473. [PubMed: 21195551] 

87. Sakurai H, Johnigan R, Kikuchi Y, Harada M, Traber LD, Traber DL. Effect of reduced bronchial 
circulation on lung fluid flux after smoke inhalation in sheep. J Appl Physiol (1985). 1998; 84(3):
980–986. [PubMed: 9480960] 

88. Hales CA, Barkin P, Jung W, Quinn D, Lamborghini D, Burke J. Bronchial artery ligation modifies 
pulmonary edema after exposure to smoke with acrolein. J Appl Physiol (1985). 1989; 67(3):
1001–1006. [PubMed: 2793693] 

89. Navar PD, Saffle JR, Warden GD. Effect of inhalation injury on fluid resuscitation requirements 
after thermal injury. Am J Surg. 1985; 150(6):716–720. [PubMed: 4073365] 

90. Herndon DN, Traber DL, Traber LD. The effect of resuscitation on inhalation injury. Surgery. 
1986; 100(2):248–251. [PubMed: 3738753] 

91. Herndon DN, Barrow RE, Linares HA, et al. Inhalation injury in burned patients: effects and 
treatment. Burns Incl Therm Inj. 1988; 14(5):349–356. [PubMed: 3228693] 

92. Cartotto R, Greenhalgh DG, Cancio C. Burn State of the Science: Fluid Resuscitation. Journal of 
burn care & research : official publication of the American Burn Association. 2017; 38(3):e596–
e604. [PubMed: 28328669] 

93. Salinas J, Chung KK, Mann EA, et al. Computerized decision support system improves fluid 
resuscitation following severe burns: an original study. Crit Care Med. 2011; 39(9):2031–2038. 
[PubMed: 21532472] 

94. Danel C, Israel-Biet D, Costabel U, Klech H. Therapeutic applications of bronchoalveolar lavage. 
Eur Respir J. 1992; 5(10):1173–1175. [PubMed: 1486961] 

95. Vymazal T, Krecmerova M. Respiratory strategies and airway management in patients with 
pulmonary alveolar proteinosis: a review. Biomed Res Int. 2015; 2015:639543. [PubMed: 
26495308] 

96. Awab A, Khan MS, Youness HA. Whole lung lavage-technical details, challenges and management 
of complications. J Thorac Dis. 2017; 9(6):1697–1706. [PubMed: 28740686] 

97. Carr JA, Phillips BD, Bowling WM. The utility of bronchoscopy after inhalation injury 
complicated by pneumonia in burn patients: results from the National Burn Repository. Journal of 
burn care & research : official publication of the American Burn Association. 2009; 30(6):967–
974. [PubMed: 19826269] 

98. Dreyfuss D, Martin-Lefevre L, Saumon G. Hyperinflation-induced lung injury during alveolar 
flooding in rats: effect of perfluorocarbon instillation. Am J Respir Crit Care Med. 1999; 159(6):
1752–1757. [PubMed: 10351914] 

99. Yamamoto H, Teramoto H, Uetani K, Igawa K, Shimizu E. Cyclic stretch upregulates interleukin-8 
and transforming growth factor-beta1 production through a protein kinase C-dependent pathway in 
alveolar epithelial cells. Respirology. 2002; 7(2):103–109. [PubMed: 11985731] 

100. Enkhbaatar P, Murakami K, Cox R, et al. Aerosolized tissue plasminogen inhibitor improves 
pulmonary function in sheep with burn and smoke inhalation. Shock. 2004; 22(1):70–75. 
[PubMed: 15201705] 

Foncerrada et al. Page 17

Ann Plast Surg. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



101. Enkhbaatar P, Cox RA, Traber LD, et al. Aerosolized anticoagulants ameliorate acute lung injury 
in sheep after exposure to burn and smoke inhalation. Crit Care Med. 2007; 35(12):2805–2810. 
[PubMed: 18074480] 

102. Enkhbaatar P, Esechie A, Wang J, et al. Combined anticoagulants ameliorate acute lung injury in 
sheep after burn and smoke inhalation. Clin Sci (Lond). 2008; 114(4):321–329. [PubMed: 
17927568] 

103. Cox CS Jr, Zwischenberger JB, Traber DL, Traber LD, Haque AK, Herndon DN. Heparin 
improves oxygenation and minimizes barotrauma after severe smoke inhalation in an ovine 
model. Surg Gynecol Obstet. 1993; 176(4):339–349. [PubMed: 8460409] 

104. McIntire A, Harris SA, Whitten JA, et al. Outcomes Following the Use of Nebulized Heparin for 
Inhalation Injury (HIHI Study). Journal of burn care & research : official publication of the 
American Burn Association. 2016

105. Desai MH, Mlcak R, Richardson J, Nichols R, Herndon DN. Reduction in mortality in pediatric 
patients with inhalation injury with aerosolized heparin/N-acetylcystine [correction of 
acetylcystine] therapy. J Burn Care Rehabil. 1998; 19(3):210–212. [PubMed: 9622463] 

106. Glas GJ, Serpa Neto A, Horn J, et al. Nebulized heparin for patients under mechanical ventilation: 
an individual patient data meta-analysis. Ann Intensive Care. 2016; 6(1):33. [PubMed: 
27083915] 

107. Kashefi NS, Nathan JI, Dissanaike S. Does a Nebulized Heparin/N-acetylcysteine Protocol 
Improve Outcomes in Adult Smoke Inhalation? Plast Reconstr Surg Glob Open. 2014; 2(6):e165. 
[PubMed: 25289358] 

108. Lopez E, Fujiwara O, Lima-Lopez F, et al. Nebulized Epinephrine Limits Pulmonary Vascular 
Hyperpermeability to Water and Protein in Ovine With Burn and Smoke Inhalation Injury. Crit 
Care Med. 2016; 44(2):e89–96. [PubMed: 26465218] 

109. Sheridan RL. Fire-Related Inhalation Injury. The New England journal of medicine. 2016; 375(5):
464–469. [PubMed: 27518664] 

110. Silverberg R, Johnson J, Gorga D, Nagler W, Goodwin C. A survey of the prevalence and 
application of chest physical therapy in U.S. burn centers. J Burn Care Rehabil. 1995; 16(2 Pt 1):
154–159. [PubMed: 7775511] 

111. Desai MH, Rutan RL, Herndon DN. Managing smoke inhalation injuries. Postgrad Med. 1989; 
86(8):69–70. 73–66. [PubMed: 2587465] 

112. Herndon DN, Thompson PB, Traber DL. Pulmonary injury in burned patients. Crit Care Clin. 
1985; 1(1):79–96. [PubMed: 3916776] 

113. Koga T, Kawazu T, Iwashita K, Yahata R. Pulmonary hyperinflation and respiratory distress 
following solvent aspiration in a patient with asthma: expectoration of bronchial casts and 
clinical improvement with high-frequency chest wall oscillation. Respir Care. 2004; 49(11):
1335–1338. [PubMed: 15507168] 

114. Kallet RH, Campbell AR, Dicker RA, Katz JA, Mackersie RC. Effects of tidal volume on work of 
breathing during lung-protective ventilation in patients with acute lung injury and acute 
respiratory distress syndrome. Crit Care Med. 2006; 34(1):8–14. [PubMed: 16374150] 

115. Sousse LE, Herndon DN, Andersen CR, et al. High tidal volume decreases adult respiratory 
distress syndrome, atelectasis, and ventilator days compared with low tidal volume in pediatric 
burned patients with inhalation injury. J Am Coll Surg. 2015; 220(4):570–578. [PubMed: 
25724604] 

116. Maxwell RA, Green JM, Waldrop J, et al. A randomized prospective trial of airway pressure 
release ventilation and low tidal volume ventilation in adult trauma patients with acute 
respiratory failure. J Trauma. 2010; 69(3):501–510. discussion 511. [PubMed: 20838119] 

117. Cioffi WG, Graves TA, McManus WF, Pruitt BA Jr. High-frequency percussive ventilation in 
patients with inhalation injury. J Trauma. 1989; 29(3):350–354. [PubMed: 2926848] 

118. Cortiella J, Mlcak R, Herndon D. High frequency percussive ventilation in pediatric patients with 
inhalation injury. J Burn Care Rehabil. 1999; 20(3):232–235. [PubMed: 10342478] 

119. Wolter TP, Fuchs PC, Horvat N, Pallua N. Is high PEEP low volume ventilation in burn patients 
beneficial? A retrospective study of 61 patients. Burns. 2004; 30(4):368–373. [PubMed: 
15145196] 

Foncerrada et al. Page 18

Ann Plast Surg. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



120. Chung KK, Wolf SE, Renz EM, et al. High-frequency percussive ventilation and low tidal volume 
ventilation in burns: a randomized controlled trial. Crit Care Med. 2010; 38(10):1970–1977. 
[PubMed: 20639746] 

121. Weaver LK. Clinical practice. Carbon monoxide poisoning. The New England journal of 
medicine. 2009; 360(12):1217–1225. [PubMed: 19297574] 

122. Weaver LK, Howe S, Hopkins R, Chan KJ. Carboxyhemoglobin half-life in carbon monoxide-
poisoned patients treated with 100% oxygen at atmospheric pressure. Chest. 2000; 117(3):801–
808. [PubMed: 10713010] 

123. Bleecker ML. Carbon monoxide intoxication. Handb Clin Neurol. 2015; 131:191–203. [PubMed: 
26563790] 

124. Piatkowski A, Ulrich D, Grieb G, Pallua N. A new tool for the early diagnosis of carbon 
monoxide intoxication. Inhal Toxicol. 2009; 21(13):1144–1147. [PubMed: 19852557] 

125. Kealey GP. Carbon monoxide toxicity. Journal of burn care & research : official publication of the 
American Burn Association. 2009; 30(1):146–147. [PubMed: 19060737] 

126. Weaver LK. Hyperbaric oxygen therapy for carbon monoxide poisoning. Undersea Hyperb Med. 
2014; 41(4):339–354. [PubMed: 25109087] 

127. Weaver LK, Hopkins RO, Chan KJ, et al. Hyperbaric oxygen for acute carbon monoxide 
poisoning. The New England journal of medicine. 2002; 347(14):1057–1067. [PubMed: 
12362006] 

128. Hardman, JG.Limbird, LE., Gilman, AG., editors. Goodman & Gilman’s The Pharmacological 
Basis of Therapeutics. 10. New York: McGraw-Hill; 2001. 

129. Toon MH, Maybauer MO, Greenwood JE, Maybauer DM, Fraser JF. Management of acute smoke 
inhalation injury. Crit Care Resusc. 2010; 12(1):53–61. [PubMed: 20196715] 

Foncerrada et al. Page 19

Ann Plast Surg. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Bronchoscopic image of trachea in inhalation injury.
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Table 1

Evidence-based treatment protocol for patients with smoke inhalation injury at Shriners Hospitals for 

Children® at Galveston

• Nebulize 20% N-acetylcysteine (3 mL) every 4 hours for 7 days;

• Alternate aerosolizing 10,000 units of heparin (in 3 mL normal saline) every 4 hours for 7 days

• Nebulize with albuterol in case of wheezing
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Table 2

Guidelines for intubation in the pre-burn center setting. Courtesy of Romanowski KS, Palmieri TL, Sen S, 

Greenhalgh DG. More than one third of intubations in patients transferred to burn centers are unnecessary: 

Proposed guidelines for appropriate intubation of the burn patient. J Burn Care Res. 2015;37(5):e409-14.

Guidelines for intubation in the pre-burn center setting

• Patient safety should not be compromised, and patient status is the ultimate determinant of intubation need

• Standard indications for intubation should be followed, including but not limited to shortness of breath, wheezing, stridor, 
hoarseness, combativeness, or decreased level of consciousness

• Contact should be made with the regional burn center as soon as is safely feasible to discuss the events surrounding the burn and 
need for intubation

• If the patient is clinically stable with no signs or symptoms of compromised airway, burns with lower need for intubation before 
transfer to a burn center are as follows:

◦ Burns that occur from causes other than flame injury

◦ Burns that do not occur in enclosed spaces

◦ Burns that are less than 20% total body surface area

◦ Burns that have no third degree burns to the face

◦ Patient is within a reasonable distance to a burn center (approximately 3-hour transfer time)
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